**Intros**

**Human Knot**

**I really wanted to do something physical at the start and I had used up most of my ideas already in previous quarters. After looking around I didn't find anything new that was really satisfactory. There's a lot of ideas that revolve around Simon Says or Duck Duck Goose that just don't feel very authentic to me. So I went with a short team building exercise I used in cub scouts. http://www.group-games.com/ice-breakers/human-knot-icebreaker.html Basically, you have the kids stand in circle grasp hands and then cooperate to untangle the resulting knot., If you're being generous you could say this relates to topology or knot theory but really its about having the kids interact together and practice cooperating. I found that my initial knot was too difficult so I split the group in half (6-7 kids per knot) which worked better. [I'd actually like to come back to knots from a mathematical perspective at some future point in time.]**

**Charter**

Afterwards I went over the the serious part of the day, the basic rules for the club. This time I boiled it down to the 3 core values:

- Respect - As guests in the classroom, towards each other etc.
- Listening - To me and to each other when they are sharing,
**I like to stress this is both hard and really important.** - Perseverance -The only section where I solicited opinions this time. I went around and had the kids talk about how they handled getting stuck. As I remember I went off on a short tangent about how long it took to solve Fermat's Last Theorem for my real life example.

**Math Carnival**

For the main activity, I decided to explore using the whiteboard more this week. I went back and forth on leveling and finally settled on the following 3 problems which I wrote on three different sections of the board. After explaining each problem, I handed out markers and told the kids to pick which problems they wanted to work on.

Cue Ball

http://mathforlove.com/lesson/billiard-ball-problem/ This one flowed really well so I spent most of my time asking questions like "I see you have a pattern for even numbers, what about the odds" or "What happens when you grow or shrink this row by 1?" I also worked a little on emphasizing charting results to look for patterns. Kids in the group tended to stay put the entire time in contrast to the other 2 problems which were a bit quicker to crack.

**Letter Magnets.**A store sells letter magnets. The same letters cost the same and different letters might not cost the same. The word ONE costs 1 dollar, the word TWO costs 2 dollars, and the word ELEVEN costs 11 dollars. What is the cost of TWELVE?

Interestingly, most kids found the solution to this through a combination of guess and check rather than equations. This was actually easier to do than I realized. So where algebraic approaches sprang up I tried to encourage the kids to go down that avenue.

The geometry here was a bit harder than I expected for everyone. I ended up scaffolding a bit and ran into some issues with knowledge about calculating the area of obtuse triangles. I was pleased that one group came up with the idea to split the shaded shape in half on its own. On the downside this one in particular was a bit susceptible to encouraging answer seeking. Next time, I need to remember to tell the kids to check their answer with another group when they think they have a solution.

####

POTW

I couldn't decide between the following 2 problems so I gave them both out. We have a week of Spring break before the next meeting so that seemed reasonable.From AOPS:

Buses from Dallas to Houston leave every hour on the hour. Buses from Houston to Dallas leave every hour on the half hour. Te trip from one city to the other takes 5 hours. Assuming the buses travel on the same highway, how many Dallas-bound buses does a Houston-Bound bus pass on the highway (not in the station).

From Blaine:

Suppose that N is an integer such that when it is divided by 3, it leaves a remainder of 2, and when it is divided by 7, it leaves a remainder of 5. How many such possible values of N are there such that 0 < N ≤ 2017?

## No comments:

## Post a Comment